Wednesday, October 29, 2008

Radiation Dose Limits

Radiation Dose Limits

RADIATION PROTECTION NOTE NO 5:THE IONISING RADIATIONS REGULATIONS 1999 & RADIATION DOSE LIMITS From 1 January 2000, Ionising Radiations Regulations 1999 (IRR99) replaced the Ionising Radiations Regulations 1985 (IRR85). The main aim of the Regulations and the supporting Approved Code of Practice (ACOP) is to establish a framework for ensuring that exposure to ionising radiation arising from work activities, whether from man-made or natural radiation, and from external radiation (eg X-rays) or internal radiation (eg inhalation of a radioactive substance) is kept as low as reasonably practicable (ALARP) and does not exceed dose limits specified for individuals. IRR99 also replaces the Ionising Radiations (Outside Workers) Regulations 1993 (OWR93) and implements a part of the Medical Exposures Directive 97/43/Euratom in relation to equipment used in connection with medical exposures.THE BASIC SAFETY STANDARDS DIRECTIVEThe 1996 Basic Safety Standards Directive (BSS Directive) reflects the 1990 recommendations of the International Commission on Radiological Protection (ICRP60). Implementation of the BSS Directive in Great Britain is achieved by a mixture of revised regulation (eg IRR99), existing legal provisions, such as the Nuclear Installations Act 1965 (NIA65) and the Radioactive Substances Act 1993 (RSA93), and new provisions, for example proposed regulations on emergency preparedness. GENERAL PRINCIPLES AND PROCEDURES 1. Justification No practice involving the use of ionising radiation shall be adopted unless its introduction produces a positive net benefit. The trivial use of ionising radiation should be avoided and each use must be justified taking into account all the adverse effects. Account should be made of the health costs involved in treating malignancies which might result from the stochastic radiation effect and also the economic and other consequences such as the disposal of any radioactive waste produced by the technique in question. 2. Optimisation All exposure to radiation shall be kept As Low As Reasonably Practicable taking economic and social factors into account. This is the ALARP principle. Radiation exposure must be minimised at all times but good judgement must be exercised. Shielding members of the public from a Cobalt 60 radiotherapy treatment unit will come to a stage when it will have to be decided whether the proposed concrete shielding is thick enough. If the calculated maximum annual dose for a member of the public is already down to one tenth of the natural annual radiation dose, it is justified on economic grounds in not providing additional shielding because the money would be better spent, in the social sense, on providing better health care. 3 Dose Limitation The radiation dose limits for each population group shall not be exceeded. If the principles in 1 and 2 are followed, it should seldom be necessary to invoke the dose limits described over. Dose limits do not include exposures received from medical treatment or natural sources. In 1983, a study group of the British Royal Society concluded that a continued annual probability of death due to occupational risks of 1 in 1000 might be acceptable and ICRP 60 took note of this in formulating its dose limit. If 20 mSv/year was received throughout a working life, the 1 in 1000 annual risk is not exceeded until retirement age when it is a very small fraction of the annual risk of death from natural causes. This then is the basis for setting the new radiation worker dose limit of 20 mSv/year in IRR99. It leads to an average predicted annual risk of death of 1 in 1300 throughout a working lifetime. It is considered that application of the ALARP principle should ensure that very few workers approach the maximum possible radiation dose, so a reasonable degree of safety should result. IRR99 DOSE LIMITS To limit stochastic effects the dose limits are1 Radiation workers >18 years:The effective dose shall be 20 mSv in any calendar year 2 Members of the public: The effective dose shall be 1 mSv in any calendar year 3 Trainees aged under 18 years:The effective dose shall be 6 mSv in any calendar year To prevent deterministic effects the limits are 1 Radiation worker >18 years:The limit on equivalent dose for the skin, hands, forearms, feet and ankles shall be 500 mSv/year 2 Radiation worker >18 years:The limit on equivalent dose for the lens of the eye shall be 150 mSv/year 3 Trainee aged <18 years:The limit on equivalent dose for the lens of the eye shall be 50 mSv/year 4 Trainee aged < 18 yearsThe limit on equivalent dose for skin, hands, forearms, feet and ankles shall be 150 mSv / year 5 Women of reproductive capacityThe limit on equivalent dose for the abdomen shall be 13 mSv in any consecutive period of three months. Once a pregnancy has been confirmed and the employer notified, the equivalent dose to the foetus should not exceed 1 mSv during the remainder of the pregnancy. THE “NATURAL" RADIATION BACKGROUND DOSE RATEWhen considering background radiation it is interesting to compare the annual dose limits above with the annual dose received from natural sources. 1. Background Gamma Radiation All soils and rocks contain several parts per million of uranium and thorium. The daughter radionuclides which arise in the decay chains of these elements emit penetrating gamma radiation which irradiates our bodies. In the Glasgow area, this results in a contribution to our annual radiation dose of around 5.0 mSv/year. In granite areas such as Cornwall and the Cairngorms, the figure is 7.4mSv/year2. Cosmic Radiation The top of the Earth’s atmosphere is continually bombarded with a flux of high-energy protons from outer space and the sun. These protons shatter the oxygen and nitrogen nuclei and produce a flux of mu mesons and neutrons at sea level resulting in a contribution of 0.3 mSv/year to our annual dose. Flying at cruising altitude, we receive an additional dose of 5 μSv /hour which means that aircrew receive a considerable annual radiation dose. 3. The Internal Dose from Potassium 40 All potassium contains 0.012% of the naturally occurring radioisotope potassium 40. This radioisotope has a half-life of 1.26 billion years and has been present since the elements in the solar system were formed. It emits energetic beta and gamma radiation and some of the background gamma radiation is due to the potassium content of soil and rocks and is found in wall plaster. The human body contains approximately 150 gram of potassium which decays by 4,500 disintegrations per second. This internal body burden, together with small additional doses from trace amounts of uranium, thorium and carbon 14, results in a contribution to our annual dose of 0.2 mSv. Adding 1, 2 and 3 gives a total annual dose of order 1 mSv which is the same dose allowed to a member of the public. 4. Radon The decay chain of the trace amounts of uranium in soil gives rise to the evolution of the noble gas radon from the soil and into the air that we breathe. The radon 222 is an alpha emitting radionuclide with a half-life of 3.8 days and in turn gives rise to short lived daughter nuclei (also alpha emitters) which attach to dust particles in the air. These particles can be trapped in the alveoli in the lung and contribute an addition effective annual dose of 1.2 mSv.

Radiopharmaceuticals

http://www.answers.com/topic/radiopharmaceutical
RADIOPHARMACEUTICAL
Definition
Radiopharmaceuticals are radioactive substances that may be used to treat cancer.
Purpose
The common radiopharmaceuticals that are used in cancer treatment include:
Chromic phosphate P 32 for the treatment of lung, ovarian, uterine, and prostate cancers
Sodium iodide I 131 for treating certain types of thyroid cancer
Strontium chloride Sr 89 for treating cancerous bone tissue
Samarium Sm 153 lexidronam for treating cancerous bone tissue
Sodium phosphate P 32 for treating cancerous bone tissue and other types of cancers.
Description
Radiopharmaceuticals used in cancer treatment are small, simple substances, containing a radioactive isotope or form of an element. They are targeted to specific areas of the body where cancer is present. Radiation emitted from the isotope kills cancer cells. These isotopes have short half-lives, meaning that most of the radiation is gone within a few days or weeks.
Chromic Phosphate P 32 and Sodium Iodide I 131
Chromic phosphate P 32 is a salt of chromium and phosphoric acid, containing a radioactive form of the element phosphorous, 32P. Its brand name is Phosphocol P 32. Chromic phosphate P 32 is used to treat fluid accumulations that can result from lung, ovarian, or uterine cancers. It is 50-80% effective in stopping fluid leakage from these organs. Chromic phosphate P 32 also is used to kill cancer cells that remain following surgery for uterine cancer. It may be used to treat ovarian or prostate cancers directly. The use of chromic phosphate P 32 is not combined with external beam radiation, but may be used in conjunction with chemotherapy.
Sodium iodide I 131, also called radioactive iodine or radioiodide, is a salt of sodium and a radioactive form of the element iodine, 131I. Sodium iodide I 131 is taken up by the thyroid gland, which absorbs most of the iodine in the body. Sodium iodide I 131 can destroy the thyroid gland, with only minor effects on other parts of the body. It is used following surgery for thyroid cancer to destroy any remaining cancerous thyroid tissue, or to destroy thyroid cancer that has spread (metastasized) to lymph nodes or other tissues. Sodium iodide I 131 is a standard treatment for differentiated thyroid cancer that has spread to the neck and other parts of the body. Its use improves the survival rate for such patients. It is not clear whether radioiodide is beneficial for small cancers of the thyroid that have not metastasized to other tissues.
Bone Metastasis
Several radiopharmaceuticals are used to treat cancerous tissue in the bone, particularly from prostate cancer. Most prostate cancer metastasizes to the bone and often this is the cause of death. When injected into a vein these radiopharmaceuticals accumulate in cancerous bone tissue and give off radiation that kills cancer cells and relieves pain in the majority of patients. These treatments are most effective for cancer that has metastasized to multiple bones. Sometimes these radiopharmaceuticals are used in conjunction with external beam radiation that is directed at the most painful areas.
Strontium chloride Sr 89 (strontium-89) is the most common radiopharmaceutical for treating bone cancer or prostate cancer that has metastasized to the bone. It is a salt of chlorine and a radioactive isotope of strontium, 89Sr. Its brand name is Metastron. Men with advanced prostate cancer who are responding to chemotherapy appear to have a better chance of survival if bone metastases is treated with strontium-89 every six weeks in conjunction with a chemotherapy drug.
Samarium SM 153 lexidronam is a radioactive form of samarium, 153Sm. The element is inside a small molecule called lexidronam. The brand name for samarium SM 153 lexidronam is Quadramet. It is used primarily to treat prostate cancer that has metastasized to the bone.
Sodium phosphate P 32 is a salt of sodium and phosphoric acid containing a radioactive form of the element phosphorous, 32P. It is used primarily for breast and prostate cancers that have metastasized to the bone. It also may be used to treat other types of cancer.
Two other radioactive isotopes, rhenium 86 and rhenium 188, sometimes are used to treat bone metastasis from prostate cancer.
Recommended Dosage
Dosages of radiopharmaceuticals vary with the individual and the type of treatment. Dosages of radioactive materials are expressed in units called millicuries.
Chromic phosphate P 32 is a suspension that is delivered through a catheter, or tube, inserted into the sac surrounding the lungs, or into the abdominal or pelvic cavities. The usual dosage is 15-20 millicuries for abdominal administration and 10 millicuries for administration to the lung sac. Chromic phosphate P 32 also may be injected into the ovaries or prostate.
Sodium Iodide I 131 is taken by mouth as a capsule or a solution. The usual dose for treating thyroid cancer is 30-200 millicuries, depending on age and body size. Doses may be repeated. Treatment usually requires two to three days of hospitalization. For this therapy to be effective there must be high levels of thyroid-stimulating hormone (TSH, or thyrotropin) in the blood. This hormone can be injected prior to treatment.
Strontium-89 is injected into a vein. The usual dosage is 4 millicuries, depending on age, body size, and blood cell counts. Repeated doses may be required.
The usual dosage of samarium Sm 153 lexidronam is 1 millicurie per kg (0.45 millicurie per lb) of body weight, injected slowly into a vein. Repeated doses may be necessary. Because samarium Sm 153 lexidronam may accumulate in the bladder, it is important to drink plenty of liquid prior to treatment and to urinate often after treatment. This reduces the irradiation of the bladder.
The dosage of sodium phosphate P 32 depends on age, body size, blood cell counts, and the type of treatment. The usual dosages range from 1–5 millicuries. Repeated doses may be required.
Precautions
Some individuals may have an allergic reaction to strontium-89, samarium SM 153 lexidronam, or sodium phosphate P 32.
Radiopharmaceuticals usually are not recommended for use during pregnancy. It is recommended that women do not become pregnant for a year after treatment with sodium iodide I 131. Breast-feeding is not possible during treatment with radiopharmaceuticals.
Precautions Before Treatment With Sodium Iodide I 131
Foods containing iodine, such as iodized salt, seafoods, cabbage, kale, or turnips, should be avoided for several weeks prior to treatment with sodium iodide I 131. The iodine in these foods will be taken up by the thyroid, thereby reducing the amount of radioiodide that can be taken up. Radiopaque agents containing iodine sometimes are used to improve imaging on an x ray. A recent x-ray exam that included such an agent may interfere with the ability of the thyroid to take up radioiodide.
Diarrhea or vomiting may cause sodium iodide I 131 to be lost from the body, resulting in less effective treatment and the risk of outside contamination. Kidney disease may prevent the excretion of radioiodide, increasing the risk of side effects from the drug.
Precautions After Treatment With Radiopharmaceuticals
Strontium-89, samarium Sm 153 lexidronam, and large total doses of sodium iodide I 131 may temporarily lower the number of white blood cells, which are necessary for fighting infections. The number of blood platelets (important for blood clotting) also may be lowered. Precautions for reducing the risk of infection and bleeding include:
avoiding people with infections
seeking medical help at the first sign of infection or unusual bleeding
using care when cleaning teeth
avoiding touching the eyes or inside of the nose
avoiding cuts and injuries
It is important to drink plenty of liquids and to urinate often after treatment with sodium iodide I 131. This flushes the radioiodide from the body. To reduce the risk of contaminating the environment or other people, the following procedures should be followed for 48–96 hours after treatment is sodium iodide I 131:
avoiding kissing and sex
avoiding the handling of another person's eating utensils, etc.
avoiding close contact with others, especially pregnant women
washing the tub and sink after each use
washing hands after using or cleaning the toilet
using separate washcloths and towels
washing clothes, bed linens, and dishes separately
flushing the toilet twice after each use
Strontium-89 and samarium Sm 153 lexidronam also are excreted in the urine. To prevent radioactive contamination, special measures should be followed for one week after receiving strontium-89 and for 12 hours after receiving samarium Sm 153 lexidronam:
using a toilet rather than a urinal
flushing the toilet several times after each use
wiping up and flushing any spilled urine or blood
washing hands after using or cleaning a toilet
washing soiled clothes and bed linens separately from other laundry.
Individuals with bladder control problems must take special measures following treatment to prevent contamination with radioactive urine.
Side Effects
The more common side effects of chromic phosphate P 32 may include:
loss of appetite (anorexia)
abdominal cramps
diarrhea
nausea and vomiting
weakness or fatigue
Less common but serious side effects of chromic phosphate P 32 may include:
severe abdominal pain
severe nausea and vomiting
fever
chills
dry cough
sore throat
chest pain
difficulty breathing
bleeding or bruising
Side effects of treatment with sodium iodide I 131 are rare and temporary. However, they may include:
loss of taste
dry mouth (xerostomia)
stomach irritation
nausea and vomiting
tenderness in the salivary glands or neck
Large total doses of radioiodine may cause infertility in men.
Flushing and transient increased bone pain are among the more common side effects of strontium-89.
Less common side effects of samarium Sm 153 lexidronam include:
irregular heartbeat
temporary increase in bone pain
nausea and vomiting
Signs of infection due to low white blood cell counts after treatment with strontium-89, samarium Sm 153 lexidronam, or sodium iodide I 131 include:
fever or chills
cough or hoarseness
lower back or side pain
painful or difficult urination
Signs of low platelet count after treatment with strontium-89, samarium Sm 153 lexidronam, or sodium iodide I 131 include:
bleeding or bruising
black, tar-like stools
blood in urine or stools
tiny red spots on the skin
Side effects are rare with sodium phosphate P 32. However, for patients treated with sodium phosphate P 32 for bone pain, side effects may include:
diarrhea
fever
nausea and vomiting
Anemia (low red blood cell count) or a decrease in the white blood cell count also are possible.
Since children and older adults are particularly sensitive to radiation, they may experience more side effects during and after treatment with radiopharmaceuticals.
Interactions
Radiation therapy or anticancer drugs may increase the harmful effects of strontium-89 and samarium SM 153 lexidronam on the bone marrow. Medicines containing calcium may prevent strontium-89 from being taken up by bone tissue. Etidronate (Didronel, one of the socalled bisphosphonates that may be used to prevent or treat osteoporosis) may prevent samarium Sm 153 lexidronam from working effectively.
http://www.mayoclinic.com/health/drug-information/DR602307

RADIOPHARMACEUTICAL
Description
Radiopharmaceuticals are agents used to diagnose certain medical problems or treat certain diseases. They may be given to the patient in several different ways. For example, they may be given by mouth, given by injection, or placed into the eye or into the bladder.
These radiopharmaceuticals are used in the diagnosis of:
Abscess and infection—Gallium Citrate Ga 67, Indium In 111 Oxyquinoline
Biliary tract blockage—Technetium Tc 99m Disofenin, Technetium Tc 99m Lidofenin, Technetium Tc 99m Mebrofenin
Blood volume studies—Radioiodinated Albumin, Sodium Chromate Cr 51
Blood vessel diseases—Sodium Pertechnetate Tc 99m
Blood vessel diseases of the brain—Ammonia N 13, Iofetamine I 123, Technetium Tc 99m Bicisate, Technetium Tc 99m Exametazime, Xenon Xe 133
Bone diseases—Sodium Fluoride F 18, Technetium Tc 99m Medronate, Technetium Tc 99m Oxidronate, Technetium Tc 99m Pyrophosphate, Technetium Tc 99m (Pyro- and trimeta-) Phosphates
Bone marrow diseases—Sodium Chromate Cr 51, Technetium Tc 99m Albumin Colloid, Technetium Tc 99m Sulfur Colloid
Brain diseases and tumors—Fludeoxyglucose F 18, Indium In 111 Pentetreotide, Iofetamine I 123, Sodium Pertechnetate Tc 99m, Technetium Tc 99m Exametazime, Technetium Tc 99m Gluceptate, Technetium Tc 99m Pentetate
Cancer; tumors—Fludeoxyglucose F 18, Gallium Citrate Ga 67, Indium In 111 Pentetreotide, Methionine C 11, Radioiodinated Iobenguane, Sodium Fluoride F 18, Technetium Tc 99m Arcitumomab, Technetium Tc 99m Nofetumomab Merpentan
Colorectal disease—Technetium Tc 99m Arcitumomab
Disorders of iron metabolism and absorption—Ferrous Citrate Fe 59
Heart disease—Ammonia N 13, Fludeoxyglucose F 18, Rubidium Rb 82, Sodium Pertechnetate Tc 99m, Technetium Tc 99m Albumin, Technetium Tc 99m Sestamibi, Technetium Tc 99m Teboroxime, Technetium Tc 99m Tetrofosmin, Thallous Chloride Tl 201
Heart muscle damage (infarct)—Ammonia N 13, Fludeoxyglucose F 18, Rubidium Rb 82, Technetium Tc 99m Pyrophosphate, Technetium Tc 99m (Pyro- and trimeta-) Phosphates, Technetium Tc 99m Sestamibi, Technetium Tc 99m Teboroxime, Technetium Tc 99m Tetrofosmin, Thallous Chloride Tl 201
Impaired flow of cerebrospinal fluid in brain—Indium In 111 Pentetate
Kidney diseases—Iodohippurate Sodium I 123, Iodohippurate Sodium I 131, Iothalamate Sodium I 125, Technetium Tc 99m Gluceptate, Technetium Tc 99m Mertiatide, Technetium Tc 99m Pentetate, Technetium Tc 99m Succimer
Liver diseases—Ammonia N 13, Fludeoxyglucose F 18, Technetium Tc 99m Albumin Colloid, Technetium Tc 99m Disofenin, Technetium Tc 99m Lidofenin, Technetium Tc 99m Mebrofenin, Technetium Tc 99m Sulfur Colloid
Lung diseases—Krypton Kr 81m, Technetium Tc 99m Albumin Aggregated, Technetium Tc 99m Pentetate, Xenon Xe 127, Xenon Xe 133
Parathyroid diseases; parathyroid cancer—Technetium Tc 99m Sestamibi, Thallous Chloride Tl 201
Pernicious anemia; improper absorption of vitamin B12 from intestines—Cyanocobalamin Co 57
Red blood cell diseases—Sodium Chromate Cr 51
Salivary gland diseases—Sodium Pertechnetate Tc 99m
Spleen diseases—Sodium Chromate Cr 51, Technetium Tc 99m Albumin Colloid, Technetium Tc 99m Sulfur Colloid
Stomach and intestinal bleeding—Sodium Chromate Cr 51, Sodium Pertechnetate Tc 99m, Technetium Tc 99m (Pyro- and trimeta-) Phosphates, Technetium Tc 99m Sulfur Colloid
Stomach problems—Technetium Tc 99m Sulfur Colloid
Tear duct blockage—Sodium Pertechnetate Tc 99m
Thyroid diseases; thyroid cancer—Fludeoxyglucose F 18, Indium In 111 Pentetreotide, Radioiodinated Iobenguane, Sodium Iodide I 123, Sodium Iodide I 131, Sodium Pertechnetate Tc 99m, Technetium Tc 99m Sestamibi
Urinary bladder diseases—Sodium Pertechnetate Tc 99m
Radiopharmaceuticals are radioactive agents. However, when small amounts are used, the radiation your body receives from them is very low and is considered safe. When larger amounts of these agents are given to treat disease, there may be different effects on the body.
When radiopharmaceuticals are used to help diagnose medical problems, only small amounts are given to the patient. The radiopharmaceutical then passes through, or is taken up by, an organ of the body (which organ depends on what radiopharmaceutical is used and how it has been given). Then the radioactivity is detected, and pictures are produced, by special imaging equipment. These pictures allow the nuclear medicine doctor to study how the organ is working and to detect cancer or tumors that may be present in the organ.
Some radiopharmaceuticals are used in larger amounts to treat certain kinds of cancer and other diseases. In those cases, the radioactive agent is taken up in the cancerous area and destroys the affected tissue. The information that follows applies only to radiopharmaceuticals when used in small amounts to diagnose medical problems.
The dosages of radiopharmaceuticals that are used to diagnose medical problems will be different for different patients and depend on the type of test. The amount of radioactivity of a radiopharmaceutical is expressed in units called becquerels or curies. Radiopharmaceutical dosages given may be as small as 0.185 megabecquerels (5 microcuries) or as high as 1295 megabecquerels (35 millicuries). The radiation received from these dosages may be about the same as, or even less than, the radiation received from an x-ray study of the same organ.
Radiopharmaceuticals are to be given only by or under the direct supervision of a doctor with specialized training in nuclear medicine.
OncoScint(R) CR/CV (satumomab pendetide) was discontinued in the United States on December 26, 2002.
Marketing of NeutroSpec (technetium 99m TC fanolesomab) was discontinued by Palatin Technologies, their marketing partner, Mallinckrodt, and the FDA. The risk of severe and fatal allergic-type reactions outweigh its benefit.
This product is available in the following dosage forms:
Capsule
Kit
back to top
Before Using
In deciding to receive a diagnostic test, the risks of taking the test must be weighed against the good it will do. This is a decision you and your doctor will make. For these tests, the following should be considered:
Allergies
Tell your doctor if you have ever had any unusual or allergic reaction to medicines in this group or any other medicines. Also tell your health care professional if you have any other types of allergies, such as to foods dyes, preservatives, or animals. For non-prescription products, read the label or package ingredients carefully.
Pediatric
For most radiopharmaceuticals, the amount of radiation used for a diagnostic test is very low and considered safe. However, be sure you have discussed with your doctor the benefit versus the risk of exposing your child to radiation.
Geriatric
Many medicines have not been studied specifically in older people. Therefore, it may not be known whether they work exactly the same way they do in younger adults or if they cause different side effects or problems in older people. Although there is no specific information comparing use of most radiopharmaceuticals in the elderly with use in other age groups, problems would not be expected to occur. However, it is a good idea to check with your doctor if you notice any unusual effects after receiving a radiopharmaceutical.
Pregnancy
Radiopharmaceuticals usually are not recommended for use during pregnancy. This is to avoid exposing the fetus to radiation. Some radiopharmaceuticals may be used for diagnostic tests in pregnant women, but it is necessary to inform your doctor if you are pregnant so the doctor may reduce the radiation dose to the baby. This is especially important with radiopharmaceuticals that contain radioactive iodine, which can go to the baby's thyroid gland and, in high enough amounts, may cause thyroid damage. Be sure you have discussed this with your doctor.
Breastfeeding
Some radiopharmaceuticals pass into the breast milk and may expose the baby to radiation. If you must receive a radiopharmaceutical, it may be necessary for you to stop breast-feeding for some time after receiving it. Be sure you have discussed this with your doctor.
Drug Interactions
Although certain medicines should not be used together at all, in other cases two different medicines may be used together even if an interaction might occur. In these cases, your doctor may want to change the dose, or other precautions may be necessary. Tell your healthcare professional if you are taking any other prescription or nonprescription (over-the-counter [OTC]) medicine.
Other Interactions
Certain medicines should not be used at or around the time of eating food or eating certain types of food since interactions may occur. Using alcohol or tobacco with certain medicines may also cause interactions to occur. Discuss with your healthcare professional the use of your medicine with food, alcohol, or tobacco.
back to top
Proper Use
The nuclear medicine doctor may have special instructions for you in preparation for your test. For example, before some tests you must fast for several hours, or the results of the test may be affected. For other tests you should drink plenty of liquids. If you do not understand the instructions you receive or if you have not received any instructions, check with the nuclear medicine doctor in advance.
back to top
Precautions
There are usually no special precautions to observe for radiopharmaceuticals when they are used in small amounts for diagnosis.
Some radiopharmaceuticals may accumulate in your bladder. Therefore, to increase the flow of urine and lessen the amount of radiation to your bladder, your doctor may instruct you to drink plenty of liquids and urinate often after certain tests.
For patients receiving radioactive iodine (iodohippurate sodium I 123, iodohippurate sodium I 131, iofetamine I 123, iothalamate I 125, radioiodinated albumin, or radioiodinated iobenguane):
Make sure your doctor knows if you are planning to have any future thyroid tests. Even after several weeks, the results of the thyroid test may be affected by the iodine solution that may be given before the radiopharmaceutical.
back to top
Side Effects
Along with its needed effects, a medicine may cause some unwanted effects. When radiopharmaceuticals are used in very small doses to study an organ of the body, side effects are rare and usually involve an allergic reaction. These effects may occur almost immediately or a few minutes after the radiopharmaceutical is given. It may be helpful to note the time when you first notice any side effect. Your doctor, nuclear medicine physician and/or technologist, or nurse will be prepared to give you immediate medical attention if needed.
Check with your doctor or nurse immediately if any of the following side effects occur:
Rare
Chills
Difficulty breathing
Drowsiness (severe)
Fainting
Fast heartbeat
Fever
Flushing or redness of skin
Headache (severe)
Nausea or vomiting
Skin rash, hives, or itching
Stomach pain
Swelling of throat, hands, or feet
Other side effects not listed may also occur in some patients. If you notice any other effects, check with your healthcare professional.

Radiofarmaseutikal

http://moodpro.tripod.com/suarx/nuklear.htm
PERUBATAN NUKLEAR


Sejarah penemuan
Apakah itu Perubatan Nuklear
Apa itu Radiasi
Apakah Perubatan Nuklear selamat
Proses pengeluaran Radiofarmaseutikal
Bilakah perlunya pengimejan
Kesan sampingan
Pengendali prosedur dan bidang tugas Pembantu Farmasi
Apakah faedah Perubatan Nuklear

SEJARAH PENEMUAN

Sejarah penemuan sinar-X telah membuka era baru perubatan nuklear pada masa kini. Penemuan pertama sinar-X telah dicatat oleh seorang guru fizik di sebuah kolej di Jerman iaitu William Conrad Roentgen (1 845-1 923). Pada 8 November 1895, Roentgen telah menghasilkan imej tangan isteri beliau dengan menggunakan sinar-X. Selepas itu prinsip radiologi telah giat diaplikasikan.
Setahun kemudian seorang saintis iaitu Bacquerel telah menemui bahan radioaktif semulajadi yang pertama dan hasil dari penemuan itu pada tahun 1898, Pierre dan Marie Curie telah berjaya mengasingkan radium. Penggunaan bahan radioaktif yang pertama dalam bidang perubatan telah diaplikasikan oleh seorang pakar perubatan iaitu Henry Alexandre Danlos dan Eugene Bloch pada tahun 1901 yang mana mereka telah memancarkan sinaran daripada radium kepada lesi tuberkulosis kulit. Semenjak itulah era perubatan nuklear terus berkembang dan penting dalam mendiagnos dan merawat pelbagai penyakit.
Setelah seabad penemuan ini kesan radiasi telah dikenalpasti samada ia memberi kebaikan atau keburukan yang mana ia bergantung kepada penggunaan dan kawalan. Oleh itu era undang-undang pengawalan radiasi telah diwujudkan pada bulan Oktober 1899 oleh kerajaan Austria setelah membahaskan mengenai isu kesan radiasi ini.

Pada tahun 1928, “International Commission On Radiological Protection (ICRP)” telah mengesyorkan penggunaan dos radiasi yang optimum dan selamat digunakan. Di Malaysia, Penguatkuasaan ini dilaksanakan oleh “Radioactive Substances Act” pada tahun 1968. Tetapi pada tahun 1984 ia diganti oleh “Atomic Energy Licensing Act (Act 304)”. Bermula dari tahun tersebut Kementerian Kesihatan telah mengambilalih peranan ini sehingga sekarang untuk memastikan keselamatan melalui pengawalan radiasi.
APAKAH ITU PERUBATAN NUKLEAR
Perubatan Nuklear adalah satu cabang perubatan yang menggunakan radiasi untuk memperolehi maklumat berdasarkan imej mengenai anatomi manusia dan fungsi organ-organ tertentu pada semua peringkat umur. Ia adalah suatu diagnosis yang primer, dengan itu sebarang penyelidikan dengan kos yang tinggi untuk sesuatu jenis penya kit boleh diabaikan. Sebagai contoh, keadaan lesi di otak tidak lagi memerlukan diagnosis secara histologi. Teknik skan otak adalah lebih cepat dan selamat diaplikasikan.
Perubatan Nuklear boleh di definasikan sebagai pendiagnosan dan rawatan penyakit yang melibatkan penggunaan “artificial radioisotope” Definisi ini bukan sahaja merangkumi prosedur untuk diagnosis klinikal dan penyelidikan secara in vivo tetapi juga digunakan di dalam prinsip radioimunoasei dan penyelidikan secara in vitro tetapi juga digunakan di dalam prinsip radioimunoasei dan penyelidikan secara in vitro.
Tekniknya amat sensitif kerana ia dapat mengesan pada peringkat 3% sebarang keabnormalan fisiologi badan. Sebagai contoh, ia dapat mengesan penyakit arteri koronari pada peningkat awal yang sebaliknya tidak dapat dikesan oleh Elektrokardiograf. Sebaliknya teknik radiologi hanya dapat mengesan apabila penyakit itu telah meningkat kepada 45%. Tambahan pula teknik sinar-X hanya dapat menunjukkan struktur secara anatomi organ tetapi skan nuklear dapat memberikan maklumat mengenai fisiologi dan biokimia organ tersebut.
Terdapat dua prosedur perubatan nuklear
i. In vivo - Radioisotop disuntik ke dalam badan pesakit.
ii. In vivo - Radioaktiviti diaplikasikan ke dalam sampel pesakit.
Radionuklid adalah bahan utama untuk mengesan, mendiagnos dan merawat pelbagai penyakit. Jangka hayatnya yang pendek dan dos yang kecil akan memberikan radiasi yang minima dan tidak akan membahayakan pesakit.
Proses skan yang dilakukan memakan masa selama 30 hingga 45 minit. Bahan radionuklid akan disuntik kepada pesakit dan akan distribusi ke organ yang tertentu. Organ tersebut akan memancarkan sinar gamma dan dikesan oleh kamera gamma untuk menghasilkan imej dan dapat memberikan maklumat yang lengkap dan tepat mengenai sel, tisu dan organ malahan berupaya mengesan sebarang keabnormalan pada peningkat awal lagi.
Dalam kebanyakan kes, maklumat yang diperolehi membolehkan doktor membuat pendiagnosan yang cepat dan tepat terhadap berbagai keadaan penyakit seperti gangguan tiroid, keretakan tulang, penyakit jantung dan kanser. Dalam kes-kes lain radiasi digunakan untuk merawat penyakit tersebut.
APA ITU RADIASI
Semua kehidupan tidak terlepas dan terdedah kepada sumber radiasi semulajadi iaitu samada dari bumi, langit atau bahan radionuklid semulajadi di dalam badan kita seperti potassium-40 dan karbon-14, tetapi ianya kurang memberi kesan negatif kepada kita. Telah dipercayai sistem badan kita berupaya memperbaiki kerosakan sel yang disebabkan oleh radiasi. Di masa kini populasi manusia banyak mendapat pendedahan bahan radiasi yang bukan hanya dari bahan radioaktif semulajad tetapi juga hasil penemuan oleh para saintis. Sehingga kini bahan radiasi banyak digunakan di dalarr pendiagnosan penyakit dan selamat digunakan.
Radiasi adalah sejenis tenaga yang wujud di persekitaran kita dalam berbagai bentuk serta berasal dari alam semulajadi atau buatan manusia.
Cahaya dan haba yang diperolehi dari matahari atau api adalah contoh radiasi bentuk semulajadi. Manakala radiasi buatan manusia seperti radiasi “gelombang mikro” yang digunakan untuk memasak dan gelombang radio untuk komunikasi jarak jauh.
Radiasi pengionan (Ionising Radiation) pula ialah radiasi yang digunakan dalam kajian-kajian perubatan nuklear dan sinar-X . Radiasi pengionan ni berasal dari kedua-dua sumber semulajadi dan buatan manusia seperti angkasa lepas, bumi, udara, makanan dan minuman serta dan bangunan tempat tinggal kita. Ianya adalah radiasi latarbelakang semulajadi (natural background radiation) yang sentiasa didedahkan kepada kita.
APAKAH PERUBATAN NUKLEAR SELAMAT
Perubatan Nuklear adalah sangat selamat kerana penyurih radioaktit atau radiofarmaseutikal yang biasa digunakan iaitu Technetium (Tc-99m) cepat diperkumuhkan dari badan melalui fungsi semulajadi (diekskresikan melalui sistem gastrointestinal dan sistem urinari).
Tc-99m amat berguna dan meluas sekali digunakan di dalam proses pengimejan bagi kebanyakan sistem organ badan manusia kerana mempunyai sifat-sifat fizikal dan kimia yang ideal. Ia dihasilkan daripada proses pemisahan Molybdenum-99 dan sistem generator. Molybdate diserap di dalam kolum Aluminium dan dielut sebagai ion pertechonetate dengan menggunakan larutan normal saline.
Tc-99m dapat mengeluarkan sinar gamma yang monoenergetik dengan voltan 140 KeV yang mana amat sesuai untuk proses penetrasi ke dalam tisu. Jangka separa hayatnya ialah enam jam. Oleh itu pendedahan radiasi kepada pesakit adalah minimum.
Pada kebanyakan kes, dos radiasi yang digunakan untuk tujuan pengimejan adalah terlalu kecil. Contohnya dos bagi pesakit yang membuat pengimejan paru-paru adalah bersamaan dengan dedahan kepada radiasi bagi penerbangan pergi balik antara Sydney dan London.
BAGAIMANAKAH PROSES PENGELUARAN RADIOFARMASEUTIKAL
Australia adalah di antara beberapa negara di dunia yang mengeluarkan penyurih radioaktif untuk keperluan diagnostik perubatan nuklear selain daripada Eropah atau pun Kanada.
Di Malaysia, pusat pengeluaran Radiofarmaseutikal ialah di lnstitut Penyelidikan Teknologi Nuklear Malaysia (MINT) di Bangi, Selangor. Proses pengeluaran di pusat ini dikawal ketat dengan sistem pengawalan kualiti yang di perakukan oleh kerajaan Malaysia.
Di Australia, reaktor dan mesin siklotron mengeluarkan keluaran Radiofarmaseutikal yang berbeza dan membekalkan kepada pusat-pusat perubatan nuklear di seluruh dunia. Setiap tahun berjuta pesakit membuat diagnosis dan rawatan di pusat-pusat tersebut termasuk di Malaysia yang sehingga kini terdapat lebih kurang 11 pusat perubatan nuklear kerajaan dan swasta.
HUSM merupakan pelopor pusat ini di pantai timur Malaysia yang lengkap dengan penkhidmatan fanmasi nuklear yang telah pun mendapat pengiktirafan kualiti ISO 9002 pada tahun 1998. Oleh yang demikian dengan kemudahan teknologi canggih masa kini maka manusia dapat meningkatkan lagi kualiti penjagaan kesihatan meneka pada tahap tertinggi.
BILAKAH PERLUNYA PENGIMEJAN
Pengimejan Radiofanmaseutikal biasanya digunakan untuk mendiagnos pelbagai keadaan seperti pengimejan jantung, skeleton, tiroid, paru-paru dan buah pinggang.
Biasanya para doktor akan mendiagnos jangkitan, perebakan tumor, keretakan tulang dan kecederaan semasa bersukan. Sebelum dilakukan pengimejan pesakit terlebih dahulu diperiksa oleh doktor dan bagi pesakit wanita hendaklah memberitahu doktor samada mereka mengandung atau menyusukan anak.
JENIS-JENIS PENGIMEJAN
Terdapat imejan kamera gamma dan imejan PET. lmejan kamera gamma dikendalikan dalam dua mod yang berbeza. Jika doktor merujuk kepada pengimejan perubatan nuklear maka salah satu daripada cara benikut digunakan.
Imejan PLANAR
Paling banyak digunakan berbanding dua jenis lain. Kaedahnya melibatkan suntikan ke badan dengan jumlah bahan kimia yang kecil dicampur dengan penyurih radioaktif.
Imejan SPECT (Singlephoton emission computed tomography)
Digunakan secara meluas di mana proses suntikan penyurih radioaktif sama seperti teknik imejan PLANAR. Kamera Gamma akan memfokus ke seluruh badan dan menyediakan sin­sin imejan dan mengambil masa lebih kurang 30 minit.
lmejan SPECT dan PLANAR adalah teknologi yang sangat memudahkan penggunaan radiofanmaseutikal untuk diagihkan, disimpan dan siap dicampur untuk digunakan di klinik dan hospital perubatan nuklear.
Imejan PET (Positron emission tomography)
Tekniknya bersamaan dengan teknik imejan SPECT tetapi membekalkan lebih maklumat imejan. Bagaimanapun radiofanmaseutikal yang dikehendaki untuk imejan PET mempunyai tempoh jangkahayat yang pendek dan disebabkan itu perlu dikeluarkan oleh SIKLOTRON.
Kaedah ini melibatkan hubungkait dengan teknologi baru dan sehingga kini MINT dalam proses untuk membangunkannya di Malaysia dengan kerjasama Agensi Tenaga Atom Antanabangsa (IAEA).
Perlukah pesakit tinggal di hospital
Pesakit yang melakukan pengimejan diagnosis biasanya akan berada beberapa jam di Jabatan Perubatan Nuklean walaupun setengah pesakit diminta tinggal di hospital untuk jangkamasa yang singkat.
Bagi pesakit yang melakukan terapi terutamanya bagi hiperaktif kelenjar tiroid kemungkinan akan dirawat sebagai pesakit luar dan tidak perlu tinggal di hospital. Jika keadaan memerlukan biasanya pesakit perlu berada di hospital selama dua atau tiga hari. Ini bukanlah disebabkan risiko terhadap kesihatan tetapi doktor hendak memastikan bahan-bahan Radioaktif seperti Iodine- 131(1-131) dikendalikan dengan selamat apabila dikumuhkan dari badan.
Apakah Perubatan Nuklear melibatkan rawatan
Pada masa ini bidang perubatan nuklear kebanyakannya digunakan untuk mendiagnosis penyakit. Walau bagaimana pun tendapat bahan radioaktif digunakan untuk merawat penyakit tententu terutamanya kanser dan dikenali sebagai terapi.
Terapi perubatan nuklear biasanya dirawat dengan cara minum bahan radioaktif iaitu Iodine-1 31 (1-131) dan pada kebanyakan kes digunakan untuk merawat penyakit hipéraktif tiroid dan juga kansertiroid. Di HUSM lebih kurang 500 orang pesakit dirawat setiap tahun dengan menggunakan kaedah radiofarmaseutikal.
Adakah kesan sampingan
Kesan sampingan terlalu sedikit bagi tujuan pengimejan diagnostik. Apabila radiasi atau radiofarmaseutikal digunakan sebagai terapi, terdapat cuma sedikit kesan sampingan seperti loya dan pembengkakan kelejar saliva. Untuk mencegahnya pesakit dinasihatkan menghisap gula-gula.
Siapakah yang mengendalikan prosedur Perubatan Nuklear
Jika doktor meminta untuk melakukan pengimejan perubatan nuklear, pesakit
akan dikendalikan oleh kakitangan khas yang dilatih secara profesional. Doktor, Teknologis, Pegawai Farmasi, Pembantu Farmasi dan Jururawat akan bertanggungjawab terhadap pesakit untuk mendapatkan rawatan yang terbaik.

Di HUSM, UnitRadiofarmasi merupakan unit yang tunggal di Malaysia yang dikendalikan sepenuhnya oleh kakitangan farmasi manakala bagi pusat perubatan nuklear yang selainnya dikendalikan oleh Teknologis.

Unit Radiofarmasi, Jabatan Farmasi, HUSM diketuai oleh seorang Radiofarmasisi yang bertindak sebagai pegawai penyelaras unit dan dibantu oleh seorang Pembantu Farmasi. Sehingga kini terdapat dua orang Pembantu Farmasi yang telah dilatih untuk mengendalikan tugas-tugas di unit ini. Bidang tugas Pembantu Farmasi di unit ini ialah mengendalikan penyediaan radiofarmaseutikal untuk diadministrasikan kepada pesakit, manakala pengendalian kamera gamma dilakukan oleh Teknologis.

Bidang tugas Pembantu Farmasi adalah seperti berikut:
1.
Penyediaan Radiofarmaseutikal ( Menyedia dan membekal / mendispen radiofarmaseutikal kepada pesakit
1.1
Penyediaan kit Radiofarmaseutikal (Tc-99 m)
1.1.1
Elusi generator Tc-99m, Mo-99 breakthrough dan kandungan A1+++ pada setiap hari.
1.1.2
Larut campur kit radiofarmaseutikal kepada pesa kit mengikut panduan pada buku temujanji pesakit.
1.1.3
Melabelkan penyediaan, rekod dalam buku log dan carta harian.
1.1.4
Membuat kawalan mutu bagi semua sediaan kit radiofarmaseutikal mengikut Protokol Kawalan Mutu Radiofarmaseutikal sebelum diadministrasikan kepada pesakit.
1.1.5
Pengiraan dan penyediaan dos pesakit (dos berbeza bagi pesakit kanak-kanak dan dewasa) dan juga pengrekodan.
.1
1 .1 .21.2 Penyediaan RadioIodine-1-131

1.2.1
Menyediakan larutan, sukat aktiviti, rekod dalam buku log dan label.
1.2.2
Menyediakan persediaan pakai habis pesakit.
1.2.3
Menyediakan dos bagi setiap pesakit samada dalam bentuk larutan atau kapsul dan diadministrasikan kepada pesakit. Pemberian dos dilakukan oleh radiofarmasis atau pun Pembantu Farmasi di bawah seliaan radiofarmasis.
1.2.4
Rekod carta harian dan folder pesakit.
1.2.5
Pemonitoran pesakit. Pesakit yang tinggal diwad 1-131, Perubatan Nuklear akan diperiksa kadar dedahan radiasi pada setiap haRI. Pesakit hanya dibenarkan pulang apabila kadar dedahan Radiasi kurang daripada 5 mR/jam pada jarak 1 meter.
2.
Penyediaan pesakit. Memeriksa buku temujanji pesakit dan menyesuaikan dengan aktiviti penyediaan.
3.
Kawalan mutu peralatan. Diperiksa pada setiap han dengan melakukan ujian konstansi pada peralatan seperti Dose Calibrator dan Gamma Weel counter.
4.
Mengurus kawalan inventori bahan­bahan keperluan.
5.
Memeriksa dan merekod kadar dedahan radiasi di bilik penyediaan dan persekitaran.
6.
Menyelenggara pembuangan sisa radioaktif mengikut kaedah yang ditetapkan.
7.
Membantu Pegawai Farmasi menunjuk ajar dan melatih pelatih pelatih dan staf lain.


Semua kakitangan yang bertugas di Jabatan Penubatan Nuklean, termasuk Pegawai Farmasi dan Pembantu Farmasi mendapat kemudahan CutiTugas Khas Perubatan selama 14 hari dalam masa setahun.

Apakah faedah Perubatan Nuklear

Memandangkan kita sedang menuju ke era baru di dalam pelbagai bidang terutama bidang perubatan, maka pelbagai penemuan baru telah diteroka bagi memudahkan doktor untuk mendapatkan diagnosis yang cepat tepat dan meluas tenhadap penyakit daripada semua peningkat umur.

Begitu juga dengan penemuan baharu radioaktif semenjak tahun 1898 lagi Penggunaan bahan nadioaktif di dalam pendiagnosan pelbagai penyakit telah membuka mata para doktor bagi mengesan sebarang 3% petunjuk keabnormalan pada pesakit. Mendapatkan rawatan awal dengat seberapa segera akan mendapatkan peluang rawatan dengan lebih berkesan. Semua ujian yang dilakukan tidak mendatangkan rasa sakit dan pesakit tendedah pada dos radiasi yang minima.

Perubatan Nuklea telah memainkan peranan yang penting walau pun agak baru ditubuhkan di Malaysia iaitu pada tahun 1968. Seabad yang lalu manusia begitu gerun apabila mengetahui bahan nadioaktif digunakan untuk tujuan pendiagnosan. Tetapi dewasa ini mereka tidak lagi berasa gusar dan bimbang terhadap kesan radiasi. Walaubagaimana pun langkah keselamatan haruslah dititik beratkan.

Terapi perubatan nuklear adalah sangat efektif, selamat dan kosnya tidak terlalu mahal. Ianya memberikan sumbangan yang begitu besar terhadap perawatan dan penjagaan kesihatan pada masa kini.



Disediakan oleh:
Ahmad Shukri bin Puteh
Unit Radiofanmaseutikal
Jabatan Fanmasi
HUSM Kelantan


http://pkukmweb.ukm.my/~penerbit/jskm-01-07.html

Teknetium-99 Perteknetat Imunoglobulin G Manusia sebagai Agen Radiofarmaseutikal dalam Pengesanan Inflamasi. ROSNANI HASHIM, SHAHARUDDIN MOHD, ANG WOAN TZE, WAN HAMIRUL BAHRIN WAN KAMAL & SHAHRIN ABDUL HAMID. Jurnal Sains Kesihatan Malaysia 1 Julai/July 2003AbstrakKajian ini dijalankan untuk menentukan potensi teknetium-99m perteknetat Immunoglubulin G. Manusia (99mTc-HlgG) sebagai agen radiofarmaseutikal dalam pengesanan lokasi inflamasi. Antibodi HlgG terturun didapati sesuai disimpan pada suhu optimum –70oC dan 0oC dan didapati rosak pada suhu penyimpanan 2 – 8oC. Peratusan perolehan penglabelan HlgG dengan 99mTc adalah melebihi 95%. Biodistribusi 99mTc-HlgG dijalankan dengan kaedah imunosintigrafi (imbasan) serta kaedah bunuh dan kira. Imunosintigram yang diperolehi empat jam selepas suntikan dos menunjukkan imbasan biodistribusi 99mTc-HlgG dikaji dengan menggunakan tikus Sprague-Dawley yang disuntik dengan turpentine secara intraotot untuk mengaruhkan inflamasi. Penentuan biodistribusi 99mTc-HlgG dijalankan dengan kaedah imunosintigrafi (imbasan) serta kaedah bunuh dan kira. Imunosintigram yang diperolehi empat jam selepas suntikan dos menunjukkan imbasan biodistribusi 99mTc-HlgG yang paling jelas pada otot terinflamasi. Hasil keputusan bunuh dan kira juga menunjukkan nisbah pengambilan 99mTc-HlgG otot terinflamasi adalah paling tinggi pada jangka masa empat jam selepas suntikan dos. Corak bagi pengumpulan 99mTc adalah berbeza berbanding dengan 99mTc-HlgG. Pengimejan sel inflamatori menggunakan radiofarmaseutikal 99mTc-HlgG, berpotensi untuk digunakan dalam diagnosis infeksi/inflamasi, contohnya bagi pesakit kanser atau yang mempunyai system ketahanan imun yang lemah dan penilaian respon pesakit terhadap terapi penyakit inflamatori.Kata kunci: Radiofarmaseutikal, Imunoglobulin G Manusia (HlgG), Teknetium-99m perteknetat ( 99mTc), inflamasi.


http://www.angelfire.com/wa/krrhkl/891pn.html
PERUBATAN NUKLEAR
Kandungan :-
1. Perubatan Nuklear
2. Pengenalan
3. Radiofarmasutikal
4. Prosedur di Jabatan Perubatan Nuklear
5. Kamera Gamma
6. Perlindungan sinaran
7. Keselamatan staf.

Perubatan Nuklear
1951
Benidict Cassen mencipta skan nuklear (rectilinear) yang pertama. Alat bergerak (back & forth) diatas organ & imel dihasilkan berdasarkan amaun radioaktiviti yang dikesan
1958
Hal Angel mencipta kamera sintilation- pengimejan seluruh organ serentak.Imej Statik & Fungsi dinamik
1970
Penemuan 99m Technetium membuat perubatan nuklear semakin popular
Sekarang
Peralatan & sistem pengimejan yang lebih canggih digunakan. Interface dengan komputer.


ISOTOP:
Satu daripada bentuk elemen yang sama yang mempunyai sifat kimia yang serupa = Jumlah elektron yang serupa.

Radionuklid
1. Rektor nuklear
2. Cyclotron
3. Generator
Farmaseutikal: Diserap cepat & menyeluruh dalam sistem biologi yang diminati.
Kembali ke kandungan

Pengenalan
Satu kaedah untuk mendapatkan informasi klinikal mengikut pengedaran radiofarmaseutikal yang telah diberi pada pesakit dengan mengambil kira jumlah radioaktiviti yang dikesan.
Pengimejan mengunakan kamera gamma lebih lazim dilakukan.
Penimejan mengunakan fungsi selain daropada anatomi.
Pengimejan statik
menampakkan bio-pdistribution radiofarseutikal, planar atau tomogarafi
Pengimejan dinamik
penyerapan / ekskresi oleh organ-organ. Menunjukkan kadar fungsi organ.
Kekurangan pada kualiti imej berbanding pengimejasn lain.
Tidak spesifik sebagai alat diagnosis klinikal - terlalu sensitif kepada pelbagai penyakit.
Kembali ke kandungan

Radiofarmasutikal
Pelbagai bahan radioaktif untuk kajian klinikal damana bahan radionuklid dicampur dengan bahan farmaseutikal secara kimia dengan ciri fisiologinya tidak berubah . Radionuklid memancarkan radiasi menembusi badan, dikesan dan boleh diukur. Dengan adanya bahan tersebut didalam organ membolehkan kajian dibuat untuk menentuklan saiz, bentuk dan fungsi organ tersebut
Mempunyai setengah hayat ( half-life) yang serupa dengan jangka masa pemeriksaan.
Radionuklid memancar sinar gamma dan tiada zarah bercas (charged particles) yang lain.
Tenaga sinar gamma diantara 50-300 KeV.
Radionuklid mudah didapati dikawasan hospital
Radionuklid mestilah stabil secara kimia dengan farmaseutikal tanpa berubah dari segi biologi (biological-behaviour).
Radiofarmaseutikal menempatkan (localise) pada kawasan yang diminati.
Radiofarmaseutikal mudah disediakan.
Kembali ke kandungan

Prosedur-prosedur di Jabatan Perubatan Nuklear.
Skan otak
Skan tiroid
Skan perfusi dan ventilasi paru-paru.
Skan renal DTPA,DMSA
Skan hati
Skan sistem biliari
Skan testis
Skan tulang
Skan seluruh tubuh
Mengimej divertikulum Meckel
Mengimej fistula esofagus- pengecut esofagus; refluks gaster.
Radionuklid
Pancaran foton utama
Setengah hayat
Gallium -67
92,182,300,390
78 jam
Iodine -123
160
13 jam
Iodine 132
280,360,640
8 hari
Tecnetium -99m
140
6 jam
Thallium -201
68-80
73.5 jam
Xenon -133
81
5.3 hari
Kembali ke kandungan

Kamera Gamma
Alat utama untuk pengimejan dalam perubatan nuklear.
Mempunyai alat pengesan (detector) & konsol menempatkan timer/ counter (menentukan jangka masa dedahan),PHA (menolak radiasi serakan) & display (tanyangan atau merakam imej).
Komputer untuk memproses data.
Jenis jenis kamera
1. Mudah -gerak (mobile)
Pacuan motor elektrik
Kristal kecil saiz 30cm dengan FOV yang terhad.
Kegunaan untuk pengimejan cardiac & thyroid
2. Kamera Scanning Statik
Pengimejan seluruh badan - imej tunggal untuk seluruh badan dan kamera yang boleh bergerak mengikut panjang badan.
3. Kamera tomografi (SPECT-Single Photon Emission Computerd Tomography)
Membolehkan kamera rotate sekeliling pesakit- penggunaan komputer untuk mendapatkan dalam tiga plana- Transaksial, Sagital & Koronal.
Hablur (crystal) = NaI (TI) menyerap gamma ray menukar ke imej cahaya (intensiti yang rendah).
PMTs = 2 fungsi utama
Menukar imej cahaya kepada denyut elektrik.
Meningkatkan (amplifies) intensiti imej.
Komputer = Memproses, melihat dan menganalisa imej.

KOLIMATOR
Tujuan = projek imej radioaktiviti ke permukaan hablur kamera.
Boleh ditukar (Interchangerable)
= tebal plumbum
jumlah lubang
saiz

Jenis kolimator
1. Parallel hole
FOV=saiz hablur
Tiada magnifikasi
sensitiviti tidak banyak berbeza dengan jarak
2. Diverging
Pengimejan punca lebih besar dari hablur
FOV yang besar
minifikasi imej
sensitiviti =jarak dari punca
3. Corverging
berlawanan dengan diverging
kegunaan untuk pengimejan organ kecil seperti ginjal,tiroid dan jantung
4. Pin hole
sama prinsip kamera pin hole
lubang tunggal
imej songsang
sensitiviti = jarak dari punca
FOV = saiz hablur
sensitiviti teruk dari kolimator lain
jarak pendek = magnifikasi
jarak jauh = minifikasi
Kembali ke kandungan

Perlindungan Sinaran.
Punca risiko = bahan radioaktif
Bahaya
dos yang diberi kepada pesakit
dedahan eksternal
pencemaran
termakan (ingestion)
Reka bentuk fasiliti
Lokasi radiofarmasi
Ruang menunggu:
pesakit radioaktif
pesakit yang tidak radioaktif
3. Fasiliti untuk decontamination
Keselamatan staf
1. Masa
Hadkan masa bersama pesakit, jika perlu sahaja
Tentukan semua persediaan (temubual, dokumentasi & pemeriksaan) dibuat sebelum suntikan radioaktif.
Setisp bsrsng ysng tercemar mesti dibuang secepat mungkin.
2. Jarak
sinar gamma mematuhi hukum songsang kuasa dua (inverse square low)
gunakan kotak khas, alat-alat seperti forsep digunakan.
3. Perisai
Alat plumbum-dinding, skrin, periuk & perisai syringe.

Kontaminasi oleh bahan radioaktif
Langkah-langkah pencegahan dari radiasi eksternal.
Mengunakan sarung tangan.
Mencuci dan monitor tangan seberapa kerap yang boleh.
Elak daripada tertelan bahan radioaktif ; dilarang merokok, makan dan minum di tempat berkerja.
Gunakan lab-caot/apron
Gunakan alas semasa memegang suis api, dll.
Pastikan air tidak memercik; gukan tiub
Letakkan calculator didalam pelapik plastik.

Friday, August 17, 2007

Pembuka bicara

Assalamualaikum


Selamat sejahtera untuk semua juru x-ray yang bertugas ........setiap hari bagi memastikan kerja anda berjalan lancar dan sentiasa ceria.....

cerita lah kat sini pengalaman menarik anda, waktu-waktu lapang yang terluang kongsikan bersama di sini..

samaada suka atau duka anda semoga kita dapat sama-sama rasai keseronokanya dan dapat terima pandangan orang lain tentang masalah atau konflik yang kita hadapi.

bagi menyertai penulisan di sini

send kan email anda pada saya :

di XRay5thUiTM@yahoogroups.com

saya akan masukan email dan anda semua boleh nikmati penulisan di sini

selamat mencuba..

ok.